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a b s t r a c t

Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-
linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially
distributed neural system. We found that evidence for spatially distributed processing of speech and
environmental sounds in a substantial extent of temporal cortices. Most importantly, regions previously
reported as selective for speech over environmental sounds also contained distributed information. The
results indicate that temporal cortices supporting complex auditory processing, including regions previ-
ously described as speech-selective, are in fact highly heterogeneous.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

For centuries, researchers have been exploring whether there
are specific areas of the human brain that give our species the
capacity for language. Over the past 20 years, functional neuroim-
aging has made it possible to study the localization of language
functions non-invasively (e.g., Binder, Frost, Hammeke, Cox,
et al., 1997; Wise et al., 1991). Previous work has shown that re-
gions in left superior temporal cortex exhibit activation for speech
sounds in relation to other auditory stimuli (Binder et al., 2000;
Humphries, Kimberley, Buchsbaum, & Hickok, 2001; Scott, Blank,
Rosen, & Wise, 2000; Thierry, Giraud, & Price, 2003). Consequently,
left superior temporal regions have been implicated in prelexical
processing of speech (Scott et al., 2000). In addition, a network of
superior temporal regions have also been delineated for processing
the human voice (e.g., Belin, Zatorre, & Ahad, 2002; Belin, Zatorre,
Lafaille, Ahad, & Pike, 2000; Lewis et al., 2009; see also Altmann,
Doehrmann, and Kaiser (2007) for superior temporal responses
to non-human vocalizations).

Nevertheless, the extent to which left superior temporal cortex
is dedicated to the neural processes required for speech or the hu-
man voice rather than general acoustic processing is still uncertain.
More broadly, identifying category specific responses in the human
brain using neuroimaging can be difficult, and there is no consen-
sus on what would constitute as evidence for category specific
neural responses (Pernet, Schyns, & Demonet, 2007). A region that
only differs in activation from baseline for speech, can be thought
ll rights reserved.
of as speech-specific. However, this stringent criterion is often re-
laxed, and substantial increases in activation for speech or multiple
dissociations between speech and other categories may be taken as
evidence for selectivity (Pernet et al., 2007). In contrast, regions
that show increased neural response for a range of acoustic stimuli,
but with only a slight bias for speech may be better thought of as
speech-preferential. In neuroimaging studies of auditory process-
ing, superior temporal regions have been traditionally reported
as speech or voice-specific (Belin et al., 2000; Scott et al., 2000)
with more recent studies suggesting some category-selective re-
sponses (e.g., Altmann et al., 2007; Engel et al., 2009; Leaver &
Rauschecker, 2010). However, other studies suggest these regions
overlap with areas that activate robustly for non-speech tasks such
as melody and pitch processing (for a review see Price, Thierry, &
Griffiths, 2005). These areas also respond strongly (and bilaterally)
to other complex auditory stimuli such as meaningful environmen-
tal sounds (e.g., a dog barking or a car starting) (Dick et al., 2007;
Lewis et al., 2004, 2009), suggesting only more general speech-
preferential processing within superior temporal regions. Indeed,
distinct cortical networks including superior temporal regions
have been identified for different classes of environmental sounds;
e.g., Lewis, Brefczynski, Phinney, Janik, and DeYoe (2005) describe
separate pathways for processing animal sounds and tools. Fur-
thermore, lesions in left middle and superior temporal cortex are
associated with correlated deficits in both speech and environmen-
tal sound processing (Saygin, Dick, Wilson, Dronkers, & Bates,
2003; Saygin, Leech, & Dick, 2010; Schnider, Benson, Alexander,
& Schnider-Klaus, 1994).

One possibility is that association regions that have shown
increased activation for a particular category of sounds such as
speech using PET and fMRI may reflect general high-level auditory
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processing common to many classes of sounds, but with a slight bias
for speech on aggregate (because of differences from other stimuli in
terms of acoustical, semantic, or attentional features). If this is the
case, these cortical regions may not be spatially homogeneous (i.e.,
a consistent preference for speech over other classes of sounds
across voxels within a region). Instead, the underlying high-level
auditory processing would reveal itself as a heterogeneous spatially
varying pattern of speech-preferential and other-sound-preferential
voxels. This would be reflected in small local biases in the sensitivity
to e.g., different auditory features, which when averaged across all
voxels, demonstrate a slight bias for speech. Indeed, recent ap-
proaches to functional neuroimaging data analysis have suggested
that language and other complex sounds processing may rely on
complex underlying computations (Formisano, De Martino, Bonte,
& Goebel, 2008; Staeren, Renvall, De Martino, Goebel, & Formisano,
2009; but see Op de Beeck, 2010). However, these studies have only
indirectly investigated the heterogeneity of the spatial signal
measured in fMRI studies of complex auditory processing and have
not directly addressed how this relates to the speech-preferential
patterns that have been found in previous studies.

In this paper, using functional magnetic resonance imaging
(fMRI), we address the extent to which auditory processing of both
speech and complex, meaningful, non-linguistic environmental
sounds within superior temporal regions relies on heterogeneous
processing. Instead of standard univariate measures of effect size,
we used multivariate statistics that are sensitive to spatially distrib-
uted patterns of activation: We asked not whether there is greater
activation for one condition (i.e., speech) over another condition
(i.e., environmental sounds), but rather whether there is sufficient
information to distinguish between the two conditions across mul-
tiple voxels irrespective of which condition is most active in any gi-
ven voxel (Kriegeskorte & Bandettini, 2007; Kriegeskorte, Goebal, &
R. Bandettini, 2006). Henceforth, we will refer to the commonly
used univariate methods as the ‘‘activation approach’’ and our mul-
tivariate methods as the ‘‘information approach’’.

The information approach has recently shown distributed pat-
terns in inferior temporal cortex for processing complex visual ob-
jects and faces (Kriegeskorte, Formisano, Sorger, & Goebel, 2007).
Here we asked whether complex auditory processing similarly re-
lies on distributed processing within superior temporal regions.
We compared the information approach to an activation-based
analysis to ask: (i) whether there are regions containing distrib-
uted information that are not detected using standard approaches;
(ii) whether regions identified as language-preferential based on
univariate analyses may nevertheless contain additional distrib-
uted information, evidence of more heterogeneous processing.

Environmental sounds are meaningful and acoustically complex
sounds; as such they constitute a good class of stimuli to compare
with speech to investigate complex auditory processing (Saygin,
Dick, & Bates, 2005). One limitation with comparing speech and
environmental sounds is that non-speech environmental sounds
contain greater spectrotemporal variability. Although some previ-
ous studies have attempted to address this issue (e.g., Thierry
et al., 2003), equating spectrotemporal complexity across speech
and other classes of sounds is always imperfect. Therefore, in this
study we limit ourselves to investigating the coarse differences be-
tween speech and a broad range of acoustically complex environ-
mental sounds. The purpose of this study is not to ask whether
speech differs from environmental sounds along specific acoustic
dimensions, or controlling for specific types of spectrotemporal
complexity. Instead, by comparing speech and environmental
sound using multivoxel pattern analysis techniques we gain in-
sight into the general style of processing involved in complex
acoustic perception of meaningful sounds. Specifically, we investi-
gate the extent to which processing is distributed or focal and
whether regions implicated in this processing are more heteroge-
neous than activation-based analyses suggest. If heterogeneous
activation for complex auditory processing is widespread across
auditory association regions, then this challenges how we think
about the underlying neural processing; even labeling given re-
gions of superior temporal lobe as preferentially active for a given
auditory class may be an oversimplification.

Note that the question asked in this study is not the typical one
in most fMRI studies, i.e., is there more activation for one sound
class than another in a given voxel. Indeed, the information ap-
proach does not distinguish between activation due to environ-
mental sounds or speech. Rather we asked about both the level
of activation, and the spatial similarity of neighboring voxels, i.e.,
do adjacent voxels have similar differences in activation for differ-
ent sound classes. Differences in detection between the activation
and information approaches would be due to differences in the
spatial homogeneity of the neighboring voxels, not how active a
single voxel or cluster of voxels was. To summarize our reasoning,
if the underlying spatial signal is approximately the same size or
greater than the Gaussian kernel (in this case 6 mm), then the stan-
dard activation approach should have greater sensitivity for detec-
tion. However, if the actual underlying signal is more distributed
within a region (i.e., if the ‘‘salt and pepper’’ pattern of contrasts
in activation visible in unsmoothed data is truly representative of
spatially varying signal rather than merely noise) then the
smoothed absolute-t value (the information-based analysis)
should be more sensitive (see also Kriegeskorte et al., 2006,
2007). Both approaches enjoy the benefit of increased signal detec-
tion afforded by spatial smoothing, however, the smoothed-abso-
lute-t analysis is tolerant of heterogeneous patterns of activation.
Furthermore, the fact that the different classes of stimuli were
not matched along acoustic dimensions is likely to make hypothe-
sis testing about the heterogeneity of speech more, not less conser-
vative, since large acoustic differences are likely to make activation
differences larger and more robust in each individual voxel.
2. Methods

2.1. Participants

Seven neurologically healthy right-handed participants aged
25–40 took part in the study. All subjects reported normal hearing
and gave written informed consent in accordance with local ethics.

2.2. Imaging procedure

Participants were scanned using a 3T GE Excite scanner and a
phased-array head coil at the Center for Functional Magnetic Res-
onance Imaging at University of California San Diego. We used a
standard single-shot echo planar T2⁄-weighted gradient echo
pulse sequence (TR = 2400 ms, TE = 27.4 ms, flip angle = 90�, linear
auto-shim) and acquired 31 interleaved slices covering the whole
brain (3.75 � 3.75 � 3.8 mm voxels, 0 mm gap). We also acquired
a structural image from each participant (MPRAGE, TR = 10.5 ms,
TE = 4.8, 1 � 1 � 1.5 mm voxels).

2.3. Experiment design

The experiment featured a mixed block design with three block
types: everyday environmental sounds, speech sounds (moderate
frequency bi or tri-syllabic nouns, or verb phrases , all recorded in a
sound-proof booth), or silence (the baseline condition). A subset of
the environmental sounds have been used previously in an fMRI
study (Dick & et al., 2007). Both the environmental sound and speech
stimuli were taken from a behavioral norming study (Saygin et al.,
2005) with sounds in both classes being approximately equally easy
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to recognize behaviorally. A list of the environmental sounds (along
with a range of acoustic measures) and speech sounds used in this
study can be found in Supplementary materials. Blocks were 24 s in
duration and there were eight blocks for each condition.

Sounds were presented dichotically. Participants listened to the
stimuli with eyes closed and were instructed to listen carefully and
try to comprehend each sound. Sounds were presented rapidly fol-
lowing each other with 100 ms ISI and an additional 250 ms be-
tween blocks. Prior to the actual scan, sound volume was
adjusted individually for each participant such that the stimuli
were loud enough to hear clearly over the scanner noise and with
earplugs, but not too loud to cause discomfort. Each participant
was scanned in two runs, each lasting approximately 5 min.

2.4. Analyses

2.4.1. Whole-brain group activation analyses
To situate the present study with previous work investigating

the neural correlates of speech and environmental sound process-
ing, we ran a standard whole-brain group activation analysis using
FSL software (www.fmrib.ox.ac.uk/fsl). For this analysis, functional
images were realigned to correct for small head movements (Jen-
kinson & Smith, 2001) and then smoothed with a 6-mm full-width
half-maximum Gaussian filter to increase SNR. The time series data
were pre-whitened to remove temporal auto-correlation (Wool-
rich, Ripley, Brady, & Smith, 2001). Images were then entered into
a general linear model by separately convolving speech and envi-
ronmental sound blocks with a double-gamma canonical hemody-
namic response function (Glover, 1999). Rest trials formed the
implicit baseline condition. In addition, temporal derivatives and
estimated motion parameters were included as covariates of no
interest to increase statistical sensitivity. First level results were
transformed into standard space using a 12 degree-of-freedom af-
fine registration to the MNI152 template. At the second level, a
paired t-test was used to calculate group effects using a mixed-ef-
fect model (Beckmann, Jenkinson & Smith, 2003). Activations were
thresholded at Z > 2.3, and were considered significant at p < 0.05
using a cluster-wise significance test (Friston et al., 1994). Four
contrasts were calculated, (i) speech > rest; (ii) environmental
sounds > rest; (iii) speech > environmental sound; (iv) environ-
mental sound > speech.

2.4.2. Individual information and activation analyses
Image preprocessing and statistical analysis were performed

using Analysis of Functional Neuroimages (AFNI) software (Cox,
1996) and MATLAB, including the afni_matlab toolbox. For all anal-
yses, the two runs were concatenated (yielding 288 volumes), spa-
tially registered for motion correction using a six-dimensional
affine transformation. The analyses were performed in each sub-
jects’ native space unless noted otherwise.

Both the information- and activation-based of analyses were re-
stricted to a large region of interest in temporal cortex to reduce
the computational load required by the randomization resampling
methods used for inference. We defined a broad anatomical mask
encompassing all of superior and middle temporal cortex (regions
that have been previously associated with speech and environmental
sound auditory processing, e.g., Dick et al., 2007; Price et al., 2005;
Thierry et al., 2003), defined using the Harvard-Oxford probabilistic
atlas in fslview. This mask was then warped into each subject’s native
space using flirt (Jenkinson, Bannister, Brady, & Smith, 2002).

Two distinct analysis procedures were used:

(i) Activation analysis

There were two sets of activation analyses, identical apart from
using either smoothed data or unsmoothed data. For the spatially
smoothed analysis, we used a Gaussian kernel of 6 mm full-width
at half-maximum (FWHM). The AFNI program 3dDeconvolve was
used to fit a general linear model at each voxel. The model esti-
mated parameters for each of the two non-baseline conditions
(speech, environmental sounds), as well as three parameters for
each run to account for mean, linear and quadratic trends. A t-sta-
tistic contrasting speech with environmental sounds was calcu-
lated for each voxel.

(i) Information analysis – smoothed absolute-t statistic

The same general linear model was calculated as in (i), except
using the unsmoothed data. We then calculated the absolute
values of the resulting speech versus sound t-statistics at each
voxel. By taking the absolute value of the t-statistic we lose all
information about the direction of activation (i.e., whether speech
or environmental sound is preferentially activate in a given voxel).
This t-statistic map was spatially smoothed with a 6 mm FWHM
Gaussian kernel. If we had used a voxel sphere for smoothing,
the smoothed absolute-t statistic would be equivalent to the
Euclidean distance (Kriegeskorte & Bandettini, 2007). Note that
because of the Gaussian spatial smoothing, spatial resolution is
sacrificed for statistical power, and any increase in detection power
in the information analysis may be the result of heterogeneous
voxels further than the 6 mm width of the Gaussian kernel.

To investigate the coarse spatial distribution of the pattern of
preferential activation, a spherical searchlight was centered on
each voxel. A voxel was given a value of 1 if any voxels in the sur-
rounding neighborhood had above threshold voxels in both classes
(i.e., evidence of some degree of heterogeneity) and a 0 otherwise.
This measure of variability in preferential activation was investi-
gated at two levels of spatial resolution: either a 2- (4 mm) or 3-
voxel (6 mm) sphere around each voxel. Thus, this was a simple
quantification of local variability in heterogeneous preferential
processing.

2.5. Significance testing

We tested for significance using randomization. A null-distribu-
tion of test statistics was calculated for each voxel by shuffling the
labels (speech, environmental sounds) of each non-baseline block
1000 times. Each of these 1000 randomized time courses was then
analyzed as in (i) and (ii) above. The distribution of randomized
test statistics was then sorted and the rank order (divided by
1000) of the real test statistic provided a p-value.

The randomization was applied to both the activation and
information-based analyses to ensure that the two could be appro-
priately compared quantitatively (even though the standard
t-statistic could also be assessed using t-distributions, this would
be a biased comparison due to the greater sensitivity of parametric
methods).

To correct for multiple comparisons, a false discovery rate
(Genovese, Lazar & Nichols, 2002) (FDR, q < 0.05) threshold was ap-
plied to the resulting p-value maps. To facilitate unbiased compar-
ison between the activation and the information-based
approaches, the same p-value was used to threshold both ap-
proaches using the lower, and more conservative FDR value of
the two. Those voxels surviving the FDR threshold were then used
in subsequent analyses (one subject had no voxels surviving the
FDR threshold and so a threshold of p < 0.01 uncorrected was used
instead, the general pattern of results were unchanged with or
without the inclusion of this subject). We counted the supra-
threshold voxels (given the use of randomization techniques on
different underlying statistics). Although a single threshold was
used, the results were qualitatively similar at different thresholds
(e.g., p < 0.05 uncorrected).

http://www.fmrib.ox.ac.uk/fsl
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2.6. Region of interest analysis

We chose two sets of regions of interest (ROIs) based on previ-
ous work: As speech-preferential areas, five theoretically-moti-
vated regions of interest were defined using the peak coordinates
previously reported to be more active for speech than environmen-
tal sounds in left superior temporal cortex (Price, Thierry & Grif-
fiths, 2005). The ROIs were constructed by creating a 10 mm
radius sphere in standard space centered on each of the peak vox-
els and were transformed back into each subject’s native space. To
investigate voice-preferential processing, 10 theoretically-moti-
vated ROIs were defined by placing 5 mm radius spheres centered
on peak coordinates taken from Belin et al. (2000). We used a smal-
ler radius in order to prevent overlap because the ROIs from Belin
et al. (2000) were situated close to each other along the upper bank
of the STG. The number of active FDR corrected voxels for the acti-
vation-based and information-based analyses for each participant
were counted within each of these ROIs.

3. Results

3.1. Group-based whole-brain activation analysis

Fig. 1 presents the group whole-brain activation analyses. Con-
sistent with previous studies we found that when compared to
rest, both speech and environmental sounds led to bilateral activa-
tion (see also Table 1) in superior and middle temporal cortical re-
gions, encompassing primary and association auditory cortices.
Bilateral superior and middle temporal regions showed stronger
responses for speech sounds compared with environmental
sounds, and medial temporal and thalamic regions showed the
opposite preference.

3.2. Individual information and activation-based analyses

Subsequently, we applied both the activation-based and the
information-based analyses described above to each participant’s
data. First, we investigated whether there were regions of temporal
cortex that contained a distributed response patterns differentiat-
ing environmental sounds and speech sounds that were not de-
tected with the activation approach. Second, we explored
whether regions previously identified as preferential for speech
sounds showed heterogeneous activation profiles.

3.3. Activation versus information analyses

As shown in Fig. 2, across superior and middle temporal regions,
we found considerably more voxels containing information distin-
Table 1
Summary of whole-brain group based analysis. The locations given are the MNI
coordinates of the maximum z-statistic for each contrast.

Location of max z Cluster volume (mm3) p-value X Y Z

Speech > rest
Left STG 4712 p < 0.0001 �62 �6 �2
Right STG 3179 p < 0.0001 58 �10 �4

Env sound > rest
Left STG 6165 p < 0.0001 �66 �36 14
Right STG 2730 p < 0.0001 54 �16 6
Occipital Fusiform 1886 p < 0.0001 �32 �74 �26

Speech > env sound
Left STG 2399 p < 0.0001 �62 �16 �2
Right MTG/STS 982 p < 0.01 58 �14 �10

Env sound > speech
PT 3131 p < 0.0001 �32 �36 10
guishing speech and environmental sounds using the information-
based approach (red voxels), than could be detected using the acti-
vation based approach (yellow and green voxels). This was true for
every individual participant. Fig. 2 shows only the left hemisphere
for each of the seven participants – qualitatively similar results
were found for each subject’s right hemisphere.

Looking at the proportion of post-threshold voxels averaged
across subjects (Fig. 2b) for the two types of analyses, we observed
that the majority of voxels (55%) were shared between both anal-
yses, with an additional 40% unique to the information-based ap-
proach, set against 5% unique for the activation-based analysis.
The pattern was similar in every subject and was highly significant,
assuming the null hypothesis that the activation and information-
based approaches are equally likely to yield unique voxels.
3.4. Speech and voice sensitive superior temporal cortex

Overall, the information approach revealed a greater extent of
auditory and auditory association cortex distinguishing speech
and environmental sounds than estimated using activation-based
analyses. We next narrowed our focus on portions of temporal cor-
tex most closely identified with speech processing and voice pro-
cessing in previous studies, to ask whether there was distributed
information present in these regions. Fig. 3 illustrates five ROIs de-
fined based on previous studies (Price et al., 2005) and the average
number of super-threshold voxels for the information and activa-
tion analyses within these regions. Aggregated across all regions,
and within regions B, C, D and E there were significantly more
super-threshold voxels in the information analysis than the activa-
tion analysis (all regions, Wilcoxon sign-rank = 14, p < 0.01; region
B, Wilcoxon sign-rank = 10.5, p < 0.05; region C, Wilcoxon sign-
rank = 7.5, p < 0.05; region D, Wilcoxon sign-rank = 7.5, p < 0.05;
region E, Wilcoxon sign-rank = 10.5, p < 0.05). In anterior temporal
Fig. 1. Whole-brain group analyses, projected onto an average surface using
Freesurfer (Dale, Fischl, & Sereno, 1999). Red voxels mark clusters of activation that
are significant at p < 0.01 (cluster-wise corrected).



Fig. 2. The left hemispheres of the seven subjects projected onto an average surface using Freesurfer (Dale et al., 1999). Red are FDR corrected super-threshold voxels for the
information-based analysis, green are for the activation-based analysis, and yellow are the voxels common to both analyses. Mean proportion of super-threshold voxels for
both information and activation-based analyses across the seven subjects. Red is the proportion of active voxels for the analysis, yellow is the proportion of voxels shared by
both analyses, green is the proportion of analyses in the activation-based analysis.

Fig. 3. The number of super-threshold voxels (in native space) in the activation-
based analysis (grey) and for the information-based analysis (black) for five regions
of interest previously identified (Price et al., 2005) for preferential activation for
speech over environmental sound, � is significant at p < 0.05; and �� is significant at
p < 0.001.
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region A, the data were less reliable since there were very few
post-threshold voxels, with only one subject for region A. (Failing
to find active voxels in this area is consistent with previous com-
parisons of fMRI with PET activation on speech processing tasks
(Devlin et al., 2000).) Fig. 4 illustrates the same approach centered
on 10 ROIs that have been found to be preferential to the human
voice over a range of non-vocal stimuli (Belin et al., 2000). In eight
of the regions, we found marginally or significantly more post-
threshold voxels using the information approach compared with
the activation approach (right anterior STS 2, Wilcoxon sign-
rank = 13, p < 0.05; right middle STS, Wilcoxon sign-rank = 9,
p < 0.1; right middle temporal gyrus, Wilcoxon sign-rank = 10,
p < 0.1; right posterior STS 1, Wilcoxon sign-rank = 10.5, p < 0.05;
right posterior STS 2, Wilcoxon sign-rank = 7.5, p < 0.05; left mid-
dle temporal gyrus, Wilcoxon sign-rank = 11, p < 0.05; left middle
STS, Wilcoxon sign-rank = 10.5, p < 0.05; left poterior STS, Wilco-
xon sign-rank = 10.5, p < 0.05). The most anterior right superior
temporal ROI, and the left planum temporale were the only regions
not demonstrating a statistical increase in detection for the infor-
mation analysis.
3.5. Spatial distribution of preferential processing

We present the patterns of preferential activation using un-
smoothed data (in contrast to the 6 mm Gaussian kernel used in
the other analyse) in Fig. 5a. These data highlight two things: first,
that there is preferential processing of environmental sounds at
the individual level in superior temporal regions that is averaged
out at the group level. This provides evidence, at the level of the
individual, of different superior temporal regions that are preferen-
tial to both environmental sound and to speech processing. Second,
the spatial heterogeneity detected by the information analyses



Fig. 4. The number of super-threshold voxels (in native space) in the activation-based analysis (grey) and for the information-based analysis (black) for 10 regions of interest
(5 mm spheres) from (Belin et al., 2000) for preferential activation for vocal over non-vocal sounds. � is significant at p < 0.05; and + is significant at p < 0.1. STS = superior
temporal sulcus; MTG = middle temporal gyrus; PT = planum temporale; Pos = posterior, Ant = anterior.
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appears to be the result of small clusters of interspersed voxels
preferential for either environmental sound or speech processing,
and that these patterns vary substantially from individual to
individual.

Fig. 5b depicts a simple quantification of the spatial heterogene-
ity of the activation patterns for environmental sound or speech
stimuli. This analysis complements the comparison of information
with activation analyses, and emphasizes that heterogeneous pro-
cessing is widespread across temporal cortex with considerable
individual variability. This spatial and within-subject variability
is averaged out in traditional activation analyses.
4. Discussion

The most striking finding from the present study is the extent of
processing heterogeneity for spectrotemporally complex meaning-
ful sounds across human temporal cortex. Post-threshold voxels
unique to the information analysis contained a mixture of voxels
in their local neighborhood, some of which had preferential activa-
tion for speech and others for environmental sounds. The underly-
ing spatial pattern was therefore less focal, reflecting a more
distributed pattern of preferential responses. Evidence for hetero-
geneous processing was most marked in superior temporal regions
(including primary and association auditory cortex) typically asso-
ciated with both basic and complex sound processing. Whereas
previous studies have suggested that areas of temporal cortex are
specific or selective for processing the human voice and speech,
our results suggest that these regions should, at most, be regarded
as preferential for these classes of stimuli. Voxels in regions re-
ported as selective for speech or voice processing are intermixed
with voxels that are preferentially activate for other complex audi-
tory processing (e.g., Belin et al., 2000; Dick et al., 2007; Price et al.,
2005; Saygin et al., 2003; 2004). This heterogeneity of processing is
not observed with univariate fMRI analyses due to substantial spa-
tial smoothing as a preprocessing step. Typically, auditory and
auditory association cortices are thought to process multiple types
of stimuli, but with regional preferences (manifested as increased
activation) for one type of sound over others (e.g., meaningful
speech, the human voice, or different classes of environmental
sounds). The present study suggests that these aggregated regional
preferences mask more subtle variability in patterns of activation,
suggesting highly heterogeneous acoustic processing.

It is important to note that this result does not reflect greater
sensitivity of the information approach in general; the information
approach is actually less sensitive than the activation approach in
the case where the underlying signal is focal (see Kriegeskorte
et al., 2006). Even restricting the analyses to specific regions of
interest that have previously been associated with speech or voice
processing, we observed distributed information reflecting both
speech and environmental sound processing. More generally, hu-
man superior and middle temporal regions appeared to be hetero-
geneous in how they process complex auditory stimuli.

The work presented here contrasted neural response to speech
and a range of environmental sounds that varied in their source
(e.g., machine, human, animal, event, music, vehicle) as well as in
their acoustical properties (e.g., sound length, pitch, harmonicity,
intensity). Previous studies had revealed substantial regional dif-
ferences in brain responses for processing different kinds of envi-
ronmental sounds (e.g., animal, human and machine sounds,
Engel et al., 2009; Lewis et al., 2009). This variability may also ex-
plain why we do not observe more regional double dissociations
between environmental sounds and speech in our group analysis
(Fig. 1). Furthermore, the variability also implies that we do not
necessarily identify regions that discriminate between sound cate-
gories per se. However, our analyses were intended to explore the
spatial heterogeneity of processing complex sounds, rather than to
specify neural regions that process a specific class of sounds. In-
deed, comparing speech sounds to such a variety of different envi-
ronmental sounds, a priori, reduces the likelihood of finding voxels
that preferentially respond to environmental sounds, and so re-
duces the likelihood of finding improved detection ability for the
information relative to the activation analysis. As such, given that
we do find widespread differences between information and acti-
vation analyses, it is likely that this same pattern of distributed
preferential patterns of activation would also occur for sets of
acoustic stimuli designed to investigate more specific questions.

The presence of local voxels with heterogeneous profiles of acti-
vation is consistent with several accounts of complex sound pro-
cessing. One possibility is that listening to spectrotemporally
complex auditory stimuli relies on many distinct sub-regions vary-
ing in size (e.g., from an individual voxel to large clusters) that are



Fig. 5. (a) Individual activation maps for speech > environmental sounds (yellow) and environmental sounds > speech (blue) using t-statistics (p < 0.05 uncorrected)
calculated without smoothing the data. (b) Voxels with heterogeneous speech and environmental sounds processing in their neighborhood (defined using a spherical
searchlight). Red is a sphere of three voxels radius and blue is a two voxel radius spherical searchlight.
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intermixed with regions better suited for processing other types of
complex auditory stimuli. It is possible that these sub-regions
perform distinct speech-relevant tasks (e.g., auditory categoriza-
tion (e.g., Desai, Liebenthal, Waldron, & Binder, 2008) or different
aspects of spectrotemporal analysis tuned to speech (e.g., Zatorre
& Belin, 2001) that in concert support speech. Under this account,
the observed distributed processing is evidence of far more sub-
regional variation and distinct processes than reported in previous
studies. The unsmoothed pattern of activation presented in Fig. 3a
suggests that to some degree this may be the case, with clusters of
voxels preferential to speech sounds interspersed with clusters of
voxels preferential to environmental sounds.

An alternative possibility is that the pattern of preferential acti-
vation for speech or environmental sounds we observe reflects an
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underlying auditory processing system that is highly distributed at
much higher resolution. Under this account, the recorded greater
activation for speech or environmental sounds in a given voxel is
actually the tip of the iceberg in terms of underlying computational
processing. A single voxel in the current experiment measures
approximately 50 mm3 and cortical tissue of this size can contain
many millions of neurons. A voxel showing preferential activation
for speech may reflect what is actually a mild bias aggregated
across a large distributed system of underlying neurons, a minority
of which would better serve non-speech environmental sound pro-
cessing (cf. Kamitani & Tong, 2005; Haynes & Rees, 2005 for a sim-
ilar account of orientation coding in primary visual cortex). Recent
high-resolution neuroimaging work has provided stronger evi-
dence for this kind of fine-scaled distribution of information within
the visual modality (Swisher & et al., 2010), and using higher-res-
olution fMRI in the auditory domain may also reveal a much finer-
grained level of heterogeneous processing.

Finally, the extent of focal versus distributed processing may be
relevant to how the auditory comprehension breaks down follow-
ing neurological insult (Saygin et al., 2003, 2010; Schnider et al.,
1994). Focal lesions may have more easily interpretable mappings
between site of damage and behavioral change in cortical regions
where there is less distributed processing, whereas regions with
more distributed patterns of activation potentially have more opa-
que lesion to symptom mappings, and possibly have greater resil-
ience to damage as predicted from artificial neural network
simulations (e.g., Rumelhart & McClelland, 1986). Future work is
needed to compare information and activation based approaches
across different brain regions on a variety of fMRI tasks, and to
bring these together with neuropsychological profiles of stoke
and neurodegenerative patients.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.bandl.2010.11.001.
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