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Cortical surface-based analysis of fMRI data has proven to be a useful
method with several advantages over 3-dimensional volumetric
analyses. Many of the statistical methods used in 3D analyses can be
adapted for use with surface-based analyses. Operating within the
framework of the FreeSurfer software package, we have implemented
a surface-based version of the cluster size exclusion method used for
multiple comparisons correction. Furthermore, we have a developed a
new method for generating regions of interest on the cortical surface
using a sliding threshold of cluster exclusion followed by cluster
growth. Cluster size limits for multiple probability thresholds were
estimated using random field theory and validated with Monte Carlo
simulation. A prerequisite of RFT or cluster size simulation is an
estimate of the smoothness of the data. In order to estimate the intrinsic
smoothness of group analysis statistics, independent of true activations,
we conducted a group analysis of simulated noise data sets. Because
smoothing on a cortical surface mesh is typically implemented using an
iterative method, rather than directly applying a Gaussian blurring
kernel, it is also necessary to determine the width of the equivalent
Gaussian blurring kernel as a function of smoothing steps. Iterative
smoothing has previously been modeled as continuous heat diffusion,
providing a theoretical basis for predicting the equivalent kernel width,
but the predictions of the model were not empirically tested. We
generated an empirical heat diffusion kernel width function by
performing surface-based smoothing simulations and found a large
disparity between the expected and actual kernel widths.
© 2006 Elsevier Inc. All rights reserved.

Introduction

Analysis of fMRI data using cortical surface models offers at
least three advantages over more conventional 3-dimensional
analysis methods. First, cortical surface models allow for better
visualization of activations, providing a more global view than
single slices and a better view of the spatial extent of activation foci
and their locations relative to each other and to sulcal/gyral
landmarks (Dale and Sereno, 1993). Second, statistical methods for

the analysis of single subject data can benefit from the exclusion of
non-gray matter signals, and smoothing signals along the cortical
surface, rather than in 3D results in superior resolution and
sensitivity (Kiebel et al., 2000; Andrade et al., 2001; Formisano et
al., 2004). Finally, group analysis with cortical surface models
employs inter-subject alignment based on the patterns of sulci and
gyri, as opposed to Talairach registration, which often ignores
sulcal/gyral landmarks and tends to blur activity across neighbor-
ing banks of a sulcus (Fischl et al., 1999a,b).

In this paper, we describe methods that we have used and
developed to facilitate cortical surface-based inter-subject analyses.
A routine aspect of inter-subject fMRI analyses – for both 2D
cortical surface and 3D volumetric methods – is spatial smoothing.
Smoothing acts as a low-pass spatial frequency filter and thus
improves the signal-to-noise ratio (SNR) by filtering out high
spatial frequency noise (Petersson et al., 1999a). Smoothing
increases the likelihood that inter-subject analyses will detect
signals from foci that display variability in their precise cortical
location across subjects. Spatial smoothing also ensures that the
data more closely approximate a continuous field of random
values, a necessary assumption of the random field theory used for
multiple comparisons correction (Worsley et al., 1992, 1996, 1999;
Petersson et al., 1999b; Andrade et al., 2001).

The vertices of a cortical surface mesh are not, however,
arranged on a grid with regular spacing; instead distances and
angles between neighboring vertices are slightly variable (Fischl
et al., 1999a; Chung et al., 2003). Because of this, direct
application of a Gaussian blurring kernel – as is done with 3D data
sets – is computationally intensive for surface-based data. A
computationally efficient method is to iteratively perform nearest-
neighbor averaging; where each vertex's value is averaged with
those of its neighbors. Slightly more complicated iterative smooth-
ing algorithms have also been developed, which rely on a heat
diffusion model and involve unequally weighting the contribution
from each neighbor in the post-iteration value of a given vertex
(Andrade et al., 2001; Chung et al., 2003, 2005). For example, in the
latest and simplest version of this method, called heat kernel
smoothing, the weights are calculated based on the distances
between a vertex and each of its neighbors (Chung et al., 2005). The
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effect of such iterative smoothing is quite similar to what would be
expected if a Gaussian blurring kernel were used.

For heat kernel smoothing, the full-width-half-max (FWHM)
size of the Gaussian blurring kernel equivalent to a particular
number of iterations can be predicted from heat diffusion equations
(Chung et al., 2003, 2005). The accuracy of those predictions,
however, is limited by the extent to which the assumptions of the
heat diffusion model are met. Specifically, the model assumes
continuous diffusion, whereas iterative smoothing is inherently
discrete and the vertices are spaced at discrete intervals. The
bandwidth of the heat kernel determines the amount of smoothing
performed at each iteration, and larger bandwidths make the
continuous diffusion model less accurate (Chung et al., 2005).
Similarly, the heat diffusion model is less accurate with increasing
inter-neighbor distances. Thus, even though the heat diffusion
model provides predictions of FWHM smoothness as a function of
number of iterations and bandwidth, it is necessary to determine
the accuracy of those predictions. To address this concern, we have
made empirical measures of FWHM smoothness as a function of
smoothing steps for both heat kernel smoothing and nearest-
neighbor average smoothing.

Another important aspect of inter-subject analyses is the
statistical correction for multiple comparisons. Multiple compar-
isons correction is desirable because of the large number of voxels,
and thus independent statistical tests, involved in voxel-by-voxel
analysis of fMRI images. An alternative to the overly conservative
Bonferroni correction is cluster size exclusion (Worsley et al.,
1992, 1999; Poline and Mazoyer, 1993; Friston et al., 1994;
Forman et al., 1995; Andrade et al., 2001). Modeling the value
(e.g., t-statistic) of each voxel or vertex as a normally distributed
random variable, it is assumed that neighbors display some degree
of covariance, or spatial smoothness. That is, the value at a voxel is
likely to be somewhat similar to its neighbors, either because of
spatial smoothing, spatially correlated noise – produced by the
scanner or physiologically – or because of the spatial extent of
actual brain activations and the resulting hemodynamic response
(Kiebel et al., 1999). With smoother data, it is more likely that a
suprathreshold voxel will have neighbors that are also suprathres-
hold, forming a cluster.

Cluster size limits can be generated, with random field theory
(Worsley et al., 1996; Andrade et al., 2001), permutation tests
(Hayasaka and Nichols, 2003, 2004; Hayasaka et al., 2004), or
Monte Carlo simulations (Poline and Mazoyer, 1993; Forman et al.,
1995), for any number of uncorrected p-values. A liberal p-value
coupled with a very large cluster size limit is theoretically
equivalent to a conservative p-value coupled with a small cluster
size limit. In practice, however, the choice of the uncorrected
p-value can have a strong influence on the number of clusters
satisfying the cluster size limits. Furthermore, for the purpose of
defining regions of interest (ROIs), the use of a conservative
threshold will tend to underestimate the true size of a focus of
activation, identifying only the very peak of activations; lower
thresholds will tend to result in the joining of distinct clusters. This
situation has motivated our development of a method for identifying
ROIs using a sliding threshold followed by growth of clusters.

Because random cluster sizes depend on the smoothness of the
images, an estimate of this is necessary. Actual data, however,
contain regions of activation with some spatial extent, increasing
measures of overall smoothness which would bias the cluster size
thresholds to be overly conservative (Kiebel et al., 1999). For this
reason, it would be more appropriate to measure the smoothness of

random noise that shares the spatial correlations related to
hemodynamic and scanner properties. As a proxy for actually
measuring noise, smoothness can be measured from the normalized
residual error of single subject GLM deconvolution (Kiebel et al.,
1999). In order to determine a suitable method for estimating the
intrinsic smoothness of a group analysis data set, we compared the
smoothness of actual group averages, normalized residual error of
group analysis, and the group average of simulated noise data sets.

Methods

Estimation of smoothness of fMRI statistics in 3D and on cortical
surface meshes

Smoothness of fMRI statistics was estimated by comparing the
local variance between neighboring vertices with the overall
variance between all vertices (Forman et al., 1995; Worsley et al.,
1999). AFNITs 3dFWHM (Ward, 2000b) was used to estimate the
smoothness (i.e., full width half max (FWHM) Gaussian filter
width) of 3-dimensional (3D) data sets. This program estimates
smoothness separately for each of the x, y, and z dimensions with
the following equation:

FWHMx ¼ dx:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"2ln2

ln 1" varðdsÞ
2 varðsÞ

" #
vuuut ð1Þ

where dx is the voxel size in the x dimension, var(ds) is the variance
of the difference in signal between neighbors in the x dimension, and
var(s) is the overall variance of the values at each voxel.

In a custom program, we adapted this method for use with
statistics associated with cortical surface meshes generated by the
FreeSurfer software package (Dale et al., 1999; Fischl et al., 1999a).
Even though the cortical surface is a 2-dimensional sheet, vertices
in a cortical surface mesh are not arranged in an orderly 2-
dimensional grid. Instead, there are on average 6 neighbors
connected to every vertex, arrayed like a pinwheel. For this reason,
separate FWHM measures for the x and y dimensions are not easily
calculated for surface-based statistics. Instead, a single FWHM
measure was calculated using the following modification of Eq. (1):

FWHMsurf ¼ dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2ln2

ln 1" varðdsÞ
2 varðsÞ

" #
vuuut ð2Þ

where dv is the average inter-neighbor distance, var(ds) is the
variance inter-neighbor differences, and var(s) is the overall
variance of the values at each vertex.

Stationary smoothness assumption

We chose to estimate smoothness of statistics globally; i.e.,
calculating the variance of inter-vertex or inter-voxel differences
across all vertices or voxels. This effectively assumes that
smoothness is uniform across the image. An alternative is to
represent cluster sizes in terms of “resolution elements” or “resels”
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(Worsley et al., 1992, 1999; Hayasaka et al., 2004). In this
framework, a metric related to smoothness is calculated locally for
each voxel or surface triangular face, and the resulting resel
estimates are used to normalize the extent of clusters. It has been
previously noted that such resel estimates are quite noisy
(Hayasaka et al., 2004). Indeed, we found that the local variability
of resel estimates is much greater than any regional differences in
smoothness across the cortical surface. For this reason, we avoided
the use of local smoothness estimates and instead made the
simplifying assumption of uniform smoothness.

Smoothing statistics on cortical surface meshes

We applied an iterative smoothing algorithm in which, after
each iteration, the new value for a given vertex is the average of its
previous value and the values of its nearest neighbors. Chung et al.
describe a “heat kernel smoothing” algorithm based on heat
diffusion models that is similar to iterative nearest neighbor
averaging, except that the contributions from each of the neighbors
are unequally weighted in a way that depends on the distance from
the central vertex (Chung et al., 2005):

Wr p;qið Þ ¼ e"
d2 ðp;qiÞ
2r2

Pm

j¼0
e"

d2ðp;qj Þ
2r2

ð3Þ

where for a given vertex p with a set of m neighbors qi, with q0
being the central vertex p itself, Wσ(p,qi) is the weight assigned to
neighbor qi. d

2(p,qi) is the squared 3D Euclidean distance between
the central vertex p and the neighbor qi, and σ is the bandwidth of
the blurring kernel. Based on heat diffusion equations, Chung et al.
note that, for a particular bandwidth and number of smoothing
steps, the predicted FWHM smoothness is:

FWHMðk;rÞ ¼ 2
ffiffiffiffiffiffiffi
ln4

p ffiffiffiffiffiffi
kr

p
ð4Þ

As this method of iterative smoothing is a discrete approxima-
tion of a continuous diffusion process, Eq. (4) will not hold true for
larger bandwidths (Chung et al., 2005).

Choice of cortical surface mesh for use in measurements

In the FreeSurfer software package, different surface meshes are
generated at successive stages of the process of generating the
complete cortical surface model. Because smoothness estimates
depend on accurate inter-vertex distances, it is important to choose
the appropriate cortical surface model for these measurements. The
original – or “orig” – surface traces the edges of MRI voxels along
the gray/white matter boundary, and thus appears blocky. The orig
surface is then smoothed, generating the “smoothwm” (smoothed
white matter) surface; with its smoothed edges, the smoothwm
surface more closely matches the actual location of the gray/white
matter boundary. As a result, inter-vertex distances are more
accurate for the smoothwm surface (dvavg=0.8 mm); for this reason,
measurements were made using this surface. Other surfaces that
involve inflation or flattening are inappropriate for these measure-

ments as these processes slightly warp the inter-vertex distances in
order to unfold the cortical surface. Inter-vertex distances and areas
are also not accurate for the average unit sphere brain used to register
the brains of multiple subjects (Fischl et al., 1999a,b).

Acquisition and analysis of fMRI data

Our methods for cortical surface-based group analysis of fMRI
data have been described previously (Hagler and Sereno, 2006),
but they are briefly summarized here. For each subject, cortical
surface models were generated from high-resolution (1 mm3)
structural MRI scans using FreeSurfer (Dale et al., 1999; Fischl et
al., 1999a). Twelve right handed subjects were scanned with a 4 T
Varian MRI scanner while performing two working memory tasks
in a random-order block design, with each stimulus condition
contrasted to a third, passive condition (EPI T2*-weighted gradient
echo pulse sequence, 8′15″ scan time, TR=3000 ms, TE=26.3 ms,
flip angle=90°, bandwidth=125 kHz, 64×64 matrix, 36 axial
slices, 3.75×3.75×3.8 mm voxels). Single subject data were
analyzed using AFNI's 3dDeconvolve, generating general linear
model (GLM) test correlation coefficients corresponding to the
area under the hemodynamic response curve (Ward, 2000a).
Because we did not use single subject t-statistics, we do not need to
be concerned about bias from temporal autocorrelations. Before
deconvolution, raw data were motion corrected using AFNI's
3dvolreg and then normalized by the mean value for each voxel. A
second order polynomial baseline fit was used and motion
estimates were used as nuisance regressors in the baseline GLM
model. For volumetric analysis, GLM coefficients for each subject
were warped into standard Talairach space using AFNI’s adwarp
before calculating group means and t-statistics. For cortical
surface-based analysis, 3D GLM coefficients for a particular
subject were sampled onto their cortical surface mesh, and then,
after smoothing on the surface, those values were resampled onto
an icosahedral sphere using a sulcal alignment with an average
icosahedral (Fischl et al., 1999a,b). Group means and t-statistics
were then calculated for each icosahedral vertex and sampled back
onto the surface of a single subject.

Sampling 3D data onto cortical surface meshes

For each subject, 3D fMRI data sets were manually aligned
with the high resolution structural MRI volumes used to create the
cortical surface meshes. GLM statistics from the 3D data sets were
“painted” onto the cortical surface by assigning to each surface
vertex the value from the voxel at the corresponding 3D
coordinates (Dale et al., 1999). We also tested a “vertex search”
method; for each vertex, voxel values are tested at multiple points
along the vertex's normal vector (i.e., perpendicular to the cortical
surface) and the maximum value is assigned to the vertex. The idea
of this method is to find the most significantly activated voxel
within the gray matter. Another potential advantage of this method
is that it can compensate for slight misalignments between
functional and structural images, caused, for example, by distortion
in EPI fMRI images. We used a relatively conservative search
distance of 2 mm from the white/gray matter boundary.

Generation of realistic noise data sets

We generated realistic noise data sets for several subjects by
shuffling the 3D GLM coefficient voxels contained within brain
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mask volumes defined by the raw fMRI data itself. After shuffling,
the resulting data sets had the same mean and variance, but the
average 3D FWHM was reduced from ~5 mm to ~2 mm. Much of
the smoothness in the original data is likely due to the widespread
areas of activation (Kiebel et al., 1999); however, it is possible that
some of the greater spatial correlation is related to the intrinsic
smoothness of fMRI images. In an attempt to more accurately
model the original data, though possibly erring conservatively, we
applied a 5 mm FWHM Gaussian blurring kernel to the shuffled
3D data; this increased the estimated FWHM to ~5 mm, matching
the original data.

Group analysis residual error calculation

Residual error of group analysis was calculated as the
difference between single-subject data (GLM coefficients re-
sampled to the spherical average surface) and the group mean.
The inter-subject standard deviation of the residual error was then
used to normalize the residuals (Kiebel et al., 1999; Worsley et al.,
1999). FWHM smoothness was calculated from the normalized
residuals using a modification of Eq. (2), wherein var(ds)
represents the inter-neighbor variance of the normalized residual
error across surface vertices and subjects, and var(s) represents the
overall variance of values across vertices and subjects.

Random field theory estimates and Monte Carlo simulations of
cluster size

Cluster size limits for use with multiple comparisons correction
were estimated using random field theory (Worsley et al., 1996;
Andrade et al., 2001) and validated with Monte Carlo simulations
(Forman et al., 1995). Cortical surface cluster size limits were
estimated with random field theory using the stat_thresh program
from Keith Worsley’s fmristat. For these estimates, we made the
simplifying assumption of spatially uniform smoothness, using
FWHM smoothness values calculated from the simulated noise
group analysis. Cluster size limits were also generated with Monte
Carlo simulations using a method similar to that used in AFNI's
AlphaSim (Ward, 2000b).

Group analysis of fMRI data typically results in t-statistics. We
simulated t-statistics by generating N=12 cortical surface data sets
with normally distributed random values. Iterative smoothing steps
were applied to achieve a range of smoothness levels. For each
level of smoothness, and for each surface vertex, a t-statistic was
calculated and statistical thresholds were applied corresponding to
various uncorrected probability (p) values assuming a t-distribution
with degrees of freedom equal to N -1. Clusters were defined as
those areas of contiguous vertices with supra-threshold values; the
area of the largest cluster was then calculated. By repeating this
process for 500 iterations, a histogram of maximum cluster area
was generated. A corrected p-value, or alpha, for each cluster size

was also calculated; the largest cluster size that corresponds to a
desired alpha could then be used as a cluster size limit.

Generating t-statistics in this way is computationally intensive,
mostly because of the surface smoothing applied to N data sets for
500 iterations. With large numbers of subjects, t-statistics can be
approximated with normally distributed z-statistics. Because it
requires considerably less computation to generate, smooth, and
threshold a single data set per iteration, and because this is the

Fig. 1. Iterative smoothing of simulated data on the cortical surface. Images
on the left illustrate a cluster growing froma single “seed”vertex as smoothing
is applied. For each level of smoothing, the cluster includes those verticeswith
values at least half the maximum value (the current value of the seed vertex).
Images on the right show the effect of smoothing onGaussian noise (normally
distributed random values) at each vertex. Below is a graph plotting the full-
width-half-max (FWHM) distance as a function of the number of smoothing
steps for each of these estimation methods. Average values (n=12 subjects)
were plotted with error bars representing the standard deviation.
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method used by AFNI’s AlphaSim, we also generated cluster size
thresholds this way.

The surface-based smoothing, cluster, and simulation programs
described in this paper, written in C and C++, are freely available for
download at http://kamares.ucsd.edu/~dhagler/dhagler-tools.tar.gz.

Results

Estimation of effective Gaussian filter width due to iterative
smoothing

Two different methods were used for estimating the effective
Gaussian filter width as a function of the number of smoothing
steps. First, the effective FWHM distance was calculated directly
from a single cluster of surface vertices. Starting with zero values
at each cortical surface vertex, a single vertex was randomly
selected, given a constant starting value, and then iteratively
smoothed using nearest-neighbor averaging, creating a cluster of
vertices with non-zero values. With more smoothing, this cluster
grows with an approximately circular shape when viewed on an

inflated or flattened representation of the cortical surface (Fig. 1).
A threshold was applied equal to half the value of the seed vertex
(i.e., the maximum value of the cluster) and the surface area of the
remaining cluster was used, assuming a roughly circular shape, to
calculate the cluster's diameter (i.e., FWHM distance). The second
method involved estimating the Gaussian FWHM from a simulated
noise data set after iterative smoothing. Random values with a
normal distribution were generated at each vertex of a cortical
surface. After each iteration of smoothing, the Gaussian filter width
was estimated using Eq. (2). Both of these methods were applied
100 times, and the results were separately averaged. These
simulations were repeated using the cortical surface models of
12 subjects, and the results were again averaged. Fig. 1 illustrates
these two methods and plots FWHM as a function of smoothing
steps for both methods. A small degree of variability was observed
between estimates obtained using different subjects’ surface
meshes (error bars in Fig. 1 represent standard deviation).

One peculiarity of the cluster area FWHM measure should be
noted; namely, there is a local maximum for N=1 smoothing step.
This is explained by the fact that after a single smoothing step, the

Fig. 2. Heat kernel smoothing. (A) FWHM smoothness as a function of iterations – estimated with the Gaussian noise method – is plotted for several heat kernel
bandwidths. (B) FWHM smoothness as function of iterations predicted by heat diffusion model for different heat kernel bandwidths (see Eq. (4)). (C) Variance of
smoothness estimates does not decrease with smaller bandwidths.
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seed vertex and each of its neighbors have the same value,
including all of them in the suprathreshold cluster. After two
smoothing steps, however, the cluster area FWHM closely matches
the Gaussian noise measure. Their strong correlation is reflected in
a correlation coefficient of 0.9993.

Both functions are well described as proportional to the square
root of the number of smoothing steps:

FWHMsurfck
ffiffiffiffi
N

p
ð5Þ

where N is the number of iterative smoothing steps and k is a
constant. Eq. (5) allows for easy determination of the appropriate
number of smoothing steps necessary to simulate a blurring kernel
with a desired FWHM. A linear best fit was found for FWHM as a
function of

ffiffiffiffi
N

p
, constraining the y-intercept to 0, and k was set

equal to the slope. Because the cluster size simulations described
below employed the Gaussian noise method for estimating
FWHM, k was determined from those values (k=1.25, least
squares linear fit R2=0.9998).

Evaluation of diffusion-based heat kernel smoothing

Smoothing simulations similar to those described above were
performed using Chung et al.’s heat kernel smoothing (Chung et
al., 2005). For each vertex, weights were assigned to neighboring
vertices according to Eq. (3). Smoothness was estimated as a
function of both number of iterations and the bandwidth of the heat
kernel (Fig. 2A). As bandwidth increases, the heat diffusion model
becomes less valid (Chung et al., 2005), and for large bandwidths
(e.g., 100), this method becomes indistinguishable from nearest-
neighbor averaging (compare Figs. 1 and 2A). A comparison of the
empirical smoothness estimates with those predicted by the heat
diffusion model (Eq. (4)), however, shows that even for small
bandwidths the heat diffusion model does not accurately predict
the degree of smoothing caused by the heat kernel method (Eq. (3))
(Fig. 2B).

Despite this discrepancy between the measured and predicted
smoothness curves, the potential advantage of heat kernel
smoothing is that it may provide more spatially uniform
smoothing; however, this method does increase the number of
iterations required – and hence computing time – to achieve a
particular level of smoothness, particularly for small bandwidths
(Fig. 2A). Because the variability of the inter-vertex distances of
the cortical surface meshes models we used was relatively small
(SD ~0.2 mm, with mean distance ~0.8 mm), it may be reasonable
to make the simplifying assumption of equal inter-vertex distances,
as the simple average method does.

If heat kernel smoothing improves the spatial uniformity of
smoothing, then the variance of FWHMestimates should be reduced
relative to the simple average method, particularly when FWHM is
estimated with the cluster area method, which is more susceptible to
local variations in inter-vertex distances. To test this, we calculated
the variance of smoothness estimates (both cluster area and
Gaussian noise FWHM methods) for different heat kernel
bandwidths, with the number of smoothing steps for each bandwidth
adjusted to obtain ~4 mm FWHM smoothness (Fig. 2C). As
expected, the variance is greatly increased for the cluster area
method relative to the Gaussian noise method (∼100-fold increase).
Comparing across different bandwidths, we found that using a

smaller bandwidth did not significantly reduce the measurement
variance. The variances of the area FWHM were actually higher for
lower bandwidths (F-test p<0.0001 for bandwidth 0.3 compared to
100). This increased variance is not due to rounding errors, as there
is no variance between estimates when the same noise data set is
used for each trial.

Smoothness estimates of group analysis statistics

Smoothness estimates from single subject residual variance
have been used previously for multiple comparisons correction for
single subject statistics (Kiebel et al., 1999; Worsley et al., 1999).
For group analysis, a similar method can be used on the inter-
subject residual variance (Worsley et al., 1999; Hayasaka et al.,
2004). We compared estimates from this method with smoothness
estimates derived from a group analysis of simulated noise data
sets. Furthermore, we carried out our group analysis of simulated
noise data sets in parallel with group analysis of actual fMRI data,
using both 3D and cortical surface-based methods.

By measuring the FWHM smoothness of group t-statistics for
shuffled data sets and normalized residual error from group analysis
of actual data (see methods), we were able to determine the appro-
priate range of FWHM values to use for cluster size simulations as a
function of the blurring kernel applied to the single subject data. In
doing these simulations, we were also able to measure the FWHM
smoothness of single subject statistics for multiple levels of
smoothing, comparing the properties of iterative smoothing on the
cortical surface and Gaussian smoothing in 3D; this was done for
real data, normalized residual error, and realistic noise.

The effect of smoothing on single subject statistics and group
analysis statistics, both with and without shuffling, is illustrated in
Fig. 3. Graphs of corresponding FWHMmeasurements are shown in
Fig. 4. Resampling voxels to 1 mm3, which accompanied Talairach
registration, by itself reduced FWHM smoothness (Figs. 4A, B).
This effect was even greater for sampling onto a high resolution
(inter-vertex distance ≈0.8 mm) cortical surface mesh. 3D Talairach
registration and resampling often include some form of interpola-
tion, but this was not done to the make the comparison between 3D
and 2D registration methods more fair. Sampling to the surface with
the normal search painting method (see Methods) had no immediate
effect on the smoothness of either actual data or shuffled statistics
(Fig. 5). For both 3D and surface smoothing, smoothness increased
linearly as a function of blurring kernel width. The slopes of these
smoothness functions were decreased for shuffled data relative to the
original data (Figs. 4A, B), demonstrating the extent to which real
activation foci contribute to smoothness estimates (Kiebel et al.,
1999).

The slopes of the smoothness functions for data sampled to the
surface with and without normal search were quite similar, with
minimal difference for shuffled data and a small increase in
smoothness for actual data painted with vertex search (Fig. 5). The
increased smoothness of data with normal search likely reflects
additional activation that is painted to the surface—that would
otherwise be missed due to slight misalignments.

Smoothness of group statistics increased similarly as a
function of blurring kernel, although with some differences
compared to single subject statistics. The smoothness of
surface-based group t-statistics from actual data increased with a
slope very similar to that of single subject data. For 3D smoothing of
data, the smoothness function noticeably deviated from linearity,
taking on a slightly sigmoid shape (Fig. 4D). Smoothness of group
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Fig. 3. 3D and surface smoothing applied to real and simulated noise data sets. In panel A, single subject GLM deconvolution coefficients (generated with AFNI's 3dDeconvolve) are shown. Odd columns show the
data (subject performing a working memory task) from the original 3D voxels for a single Talairach-transformed sagittal slice (x=−42 mm), while even columns show the same data sampled onto the cortical surface
model. The third and fourth columns show the same data but after shuffling the 3D voxels within the brain to simulate noise. The first row shows these data without smoothing, and subsequent rows show the data
after 3, 6, or 9 mm FWHM smoothing, either in 3D or on the cortical surface. In panel B, the results of group analysis (t-statistics, n=12 subjects) after varying levels of smoothing applied to each subjects' data are
shown. All data are unthresholded and scaled liberally to enable viewing of even the smallest values.
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t-statistics from shuffled data increased much more slowly than
group t-statistics from actual data (Figs. 4C, D). The smoothness
function of residual error was generally similar to that of shuffled
data, particularly at an applied smoothness of 4 mm FWHM. With

Fig. 4. Smoothness measurements as a function of 3D or surface smoothing. FWHM Gaussian smoothness was estimated from 3D and cortical surface data by
comparing the variance of inter-neighbor differences to overall variance (Eqs. (1) and (2) in text). These measurements are plotted as functions of the FWHM of
the blurring kernel applied. Results are shown for single subject deconvolution coefficients (A and B, average of measurements from 12 subjects) and group
analysis t-statistics (C,D). In panels A and B, the leftmost data points are measurements from the original 3D voxels, prior to Talairach registration or resampling
to the cortical surface. Residuals in panels A and B are the differences between the GLMmodel and the single subject time series data, normalized by the standard
deviation across time. Residuals in panels C and D are the differences between each subject's GLM coefficients and the group mean, normalized by the standard
deviation across subjects.

Fig. 5. Smoothness measurements as a function of surface smoothing for
data painted to surface with and without normal vector search, for both
actual and shuffled single subject GLM coefficients.

Fig. 6. Cluster size threshold estimates. Cortical surface cluster size (mm2)
is plotted in panel A as a function of FWHM smoothness. The uncorrected
p-value was held constant at p<0.01. In panel B, cluster size is plotted as
a function of uncorrected p-value, with smoothness FWHM=4 mm.
Cluster sizes plotted correspond to the maximum cluster size that would
occur by chance 5% of the time with the given uncorrected p-value and
FWHM smoothness according to either random field theory (RFT) using a
t-distribution, Monte Carlo simulations with a z-distribution, or Monte
Carlo simulations with a t-distribution.
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larger blurring kernels, normalized residuals were smoother than
the shuffled data sets.

A comparison of surface-based (Fig. 4C) and 3D (Fig. 4D)
group statistics, shows that 3D averaging results in substantially
more blurring than surface-based averaging. For example, if a
4 mm blurring kernel is applied to 3D single subject data, the group
t-statistics exhibit ~6.5 mm FWHM intrinsic smoothness (shuffled
stats or residual error, Fig. 4D). If 10 steps of surface smoothing
are applied to single subject statistics, corresponding to a 4 mm
FWHM blurring kernel, the intrinsic smoothness of the group
t-statistics is ~4.5 mm FWHM (Fig. 4C).

Surface-based cluster size thresholding

Having arrived at smoothness estimates unbiased by real brain
activations, we used these smoothness values to estimate cluster
size thresholds. Cluster size thresholds were estimated directly,
assuming a t-distribution, with random field theory using Keith
Worsley's fmristat, and then compared to cluster sizes generated
empirically with Monte Carlo simulations. Additionally, we
simulated both t-statistics, which is computationally intensive
(Hayasaka and Nichols, 2003), and z-statistics, as is done by
AFNI's AlphaSim (Ward, 2000b). We find a close agreement
between these different methods for generating cluster size
thresholds (Fig. 6). An example of the application of such
thresholds is shown in Fig. 7. We performed a surface-based inter-

subject t-test after applying 4 mm surface-based smoothing to the
single subject GLM coefficients, which resulted in 4.5 mm FWHM
smoothness of the group t-statistics of shuffled data or the
normalized residuals. Two separate thresholds – corresponding to
uncorrected p-values of 10−2 and 10−3 – were applied to the group
analysis t-statistics, setting sub-threshold values to zero. Clusters
were found among the remaining values and those clusters smaller
than the cluster size limit for the given uncorrected p-value –

corresponding to a corrected alpha of 0.05 – were also set equal to
zero.

Defining ROIs with sliding threshold clustering

The set of clusters identified with different uncorrected p-values
were naturally quite different in spatial extent. More conservative
thresholds excluded weaker, but presumably real activations while
more liberal thresholds resulted in the joining of multiple foci into
larger clusters (Fig. 7). We developed a method for defining
surface-based ROIs by using a sliding threshold clustering scheme
in which clusters were first identified using a low p-threshold and
the corresponding large cluster size limit (Fig. 7B). Smaller clusters
within those larger clusters were then identified by applying
successively higher p-thresholds—along with their smaller cluster
size limits (Fig. 7C). After identifying multiple clusters in this way,
overlap between clusters was resolved by excluding the larger
cluster in a pair of overlapping clusters. Finally, the remaining

Fig. 7. Cluster size exclusion applied to surface-based group statistics. Group analysis t-statistics (real data, n=12 subjects) are displayed on a cortical surface
mesh. (A) Unthresholded t-statistics. (B) t-statistics thresholded at p<10−2, before (left) and after (right) clusters smaller than the cluster size threshold were
excluded. In panel C, a threshold of p<10−3 was applied. In panels B and C, the multiple comparison corrected p-value was 0.05 after cluster exclusion for the
surface-based statistics. (D) Multiple ROIs defined with sliding threshold cluster exclusion and subsequent cluster growth. Automatically generated cortical
surface ROIs are shown in different colors.
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clusters were allowed to grow radially outward until they reached
another cluster or they reached the edge of the original low
threshold boundary (Fig. 7D).

Discussion

The introduction of cortical surface-based methods has
provided the means for improved visualization and analysis of
fMRI data (Dale and Sereno, 1993; Sereno et al., 1995; Dale et al.,
1999; Fischl et al., 1999a; Kiebel et al., 2000; Andrade et al., 2001;
Formisano et al., 2004). We have implemented cluster-based
multiple comparisons correction for cortical surface meshes
generated with FreeSurfer and developed a sliding threshold
clustering method for defining surface-based ROIs. To enable the
use of these methods, we adapted cluster size simulation methods
used in 3D analysis to cortical surface meshes and we performed
other simulations to inform the choice of key parameters in cluster
size simulations. We simulated the effects of iterative smoothing on
the cortical surface, empirically deriving Gaussian filter width as a
function of smoothing steps. This relationship guided the selection
of the number of smoothing steps with which to precede group
averages. Using this method, we also empirically tested the
predictions of the heat kernel diffusion model of cortical surface
smoothing. Furthermore, we compared the effects of 3D and
surface smoothing on simulated noise and actual data and tested
methods for estimating the intrinsic smoothness of group analysis
statistics.

Surface-based smoothing

We propose using a simple method of iterative smoothing:
averaging the values of neighboring vertices. The advantage of this
method is that it is uncomplicated and computationally efficient.
We showed that iterative smoothing based on models of diffusion
does not seem to provide advantages that would outweigh the
increased computation they require (Andrade et al., 2001; Chung et
al., 2003, 2005). These diffusion smoothing methods may provide
better spatial uniformity of smoothing when the surface meshes
used have large variability in inter-vertex distance, but not with the
relatively uniform, high-resolution cortical surface meshes typi-
cally used in MRI research. In addition, because of the
approximations required for representing continuous diffusion as
a discrete, iterative process, the FWHM smoothness achieved with
a particular number of smoothing steps is not necessarily modeled
accurately by the diffusion-derived equations, especially at the
high bandwidths used by Chung et al. Finally, we find that use of a
high bandwidth is only minimally different from simple averaging.
Thus it remains necessary, as we have done, to measure the actual
FWHM smoothness resulting from a particular set of smoothing
parameters.

Sampling 3D data onto a cortical surface mesh

We sampled, or “painted” 3D GLM coefficients onto cortical
surface meshes using a simple method of assigning values to
surface vertices based on the voxel within which they lie, and
compared this to a searching method in which for each vertex, the
maximum value was chosen from the voxels a short distance along
the vertex's normal vector. If a particular patch of gray matter is
imaged with 2 or more voxels that include signal from white matter
and/or CSF (partial voluming), this search method will choose the

voxel with the largest signal and presumably the largest fraction of
gray matter. The search method can also compensate for slight
misalignments – e.g., due to image distortion – between the EPI
images and the high-resolution structural images used to create the
cortical surface meshes. Accurate shimming and robust methods
for correcting EPI image distortion are important for reducing
registration errors, but residual distortions typically remain. We
found that normal search painting slightly increased the FWHM
smoothness of painted data, but had no effect on simulated noise
data sets.

One could also paint time series data, rather than GLM
coefficients, onto the cortical surface and then carry out GLM
deconvolution (Andrade et al., 2001). Using normal search
painting in this case would not be recommended as there is no
reason to expect that the higher amplitude voxel at a given time
point is the one containing the largest fraction of gray matter. If
data are painted without normal search, it makes no difference
whether values are sampled to the surface before or after GLM
tests, as the values are not changed by the resampling. There could
be a very slight difference if spatial smoothing was applied on the
surface before, rather than after, single subject GLM deconvolu-
tion. We found, however, that smoothing 3D time courses before,
rather than after, GLM deconvolution had a minimal difference on
the resulting statistics; neither order appeared to provide any
systematic advantage (data not shown). Because painting time
series data onto a cortical surface mesh are much more time
consuming than painting a few GLM coefficients, it is more
efficient to paint and smooth after deconvolution.

Estimating the intrinsic smoothness of group analysis statistics

Cluster size limits for inter-subject analyses derived from
random field theory or Monte Carlo simulations require an estimate
of the smoothness of group analysis statistics. Because actual data
presumably contain real activations, direct estimation of smooth-
ness will result in overly conservative cluster size thresholds. Our
approach to estimating the intrinsic smoothness of group analysis
statistics was based on simulation of an actual group analysis. As
expected, the smoothness estimates of the group t-statistics were
substantially lower for the simulated noise analysis, resulting in
lower cluster size thresholds. We found that this method was
similar to estimation of smoothness from normalized residual error;
because of the considerable computation involved in shuffling the
voxels for each subject and computing a separate group analysis, it
is preferable to estimate smoothness from the normalized residuals.
The two methods provide the same result when a 4 mm blurring
kernel is used (Fig. 4). The source of the disagreement between
these methods with larger blurring kernels is unclear. It is possible
that the greater smoothness of the residuals is due to anatomical
correlations between subjects; some of the smoothness related to
cortical activation could also be retained in the residual error,
particularly if the response is not perfectly modeled by the GLM
equations.

Using these methods for estimating the intrinsic smoothness of
group statistics, we found that cortical surface-based group
analysis resulted in substantially less additional blurring than 3D
analysis via Talairach registration. One practical consideration of
this difference is that lower smoothness estimates allow for smaller
cluster size thresholds for multiple comparison correction. This
difference also appears to suggest higher effective resolution for
cortical surface-based group analysis.
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Sliding threshold clustering

Because the sliding threshold clustering method applies multi-
ple statistical tests, each with its own likelihood of detecting false
clusters, an additional multiple comparisons problem arises,
perhaps suggesting a Bonferroni-type correction such as requiring
that the false positive rate, or alpha, for each test be divided by the
number of tests. Alternatively, False Discovery Rate methods could
be used to exclude some of the less significant clusters (Genovese
et al., 2002). It should be recognized, however, that the tests are not
truly independent. If a cluster of a particular size and intensity
passes one test, whether it is true or false, it is likely that the same
cluster will pass another test with a slightly higher p-threshold but
a lower cluster size limit. We have, however, avoided the need for
additional correction by applying a single cluster threshold test
with a relatively low uncorrected p-threshold – and the corres-
ponding large cluster size limit – and then limiting the purpose of
the sliding threshold method to finding smaller clusters within
those larger clusters. Thus, the risk is not that we increase the rate
of false positives, but that we incorrectly subdivide a cluster, a
perhaps more acceptable risk.

Restricting analysis to ROIs can be another way to control for
the multiple comparisons problem. ROIs can be created on the
basis of anatomical markers – such as sulci and gyri – but such
regions may not directly correspond to functional subdivisions of
the brain. Using clusters of activation in response to a given
stimulus as the ROIs can provide a way to more meaningfully
restrict the analysis. For example, we have previously used
activations from block-design experiments to guide the creation of
ROIs with which to analyze phase-encoded retinotopic mapping
data (Hagler and Sereno, 2006). The problem, however, is that it is
difficult to choose a single threshold that results in clusters that
adequately reflect the population of cortical areas of interest.
Clusters formed with a low threshold will tend to cover too large a
region, often including several local maxima within a single
cluster. Higher thresholds, however, may exclude areas with
weaker, but true, activation; furthermore, the extent of the
remaining clusters is usually quite small, making the ROI analysis
too restricted, ignoring potentially important regions of activation
surrounding the peaks. The advantage of the sliding threshold
method is that a balance is struck between these two extremes
without requiring the subjective choice of the single threshold that
results in the optimal set of ROIs.
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